Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164252, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245829

RESUMO

A strain of the protozoan ciliate Tetrahymena thermophila adapted to increasing Pb(II) concentrations over two years has shown that one of the resistance mechanisms to this extreme metal stress is the lead biomineralization to chloropyromorphite, one of the most stable minerals in the earth's crust. Several techniques such as microanalysis coupled to transmission and scanning electron microscopy (X-Ray Energy Disperse Spectroscopy), fluorescence microscopy and X-ray power diffraction analysis have revealed the presence of chloropyromorphite as crystalline aggregates of nano-globular structure, together with the presence of other secondary lead minerals. This is the first time that the existence of this type of biomineralization in a ciliate protozoan is described. The Pb(II) bioremediation capacity of this strain has shown that it can remove >90 % of the toxic soluble lead from the medium. A quantitative proteomic analysis of this strain has revealed the main molecular-physiological elements involved in adaptation to Pb(II) stress: increased activity of proteolytic systems against lead proteotoxicity, occurrence of metallothioneins to immobilize Pb(II) ions, antioxidant enzymes to mitigate oxidative stress, and an intense vesicular trafficking presumably involved in the formation of vacuoles where pyromorphite accumulates and is subsequently excreted, together with an enhanced energy metabolism. As a conclusion, all these results have been compiled into an integrated model that could explain the eukaryotic cellular response to extreme lead stress.


Assuntos
Tetrahymena thermophila , Tetrahymena thermophila/fisiologia , Chumbo/toxicidade , Biomineralização , Proteômica , Minerais/química
4.
Front Plant Sci ; 11: 1240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903538

RESUMO

Overexpression of membrane-bound K+-dependent H+-translocating inorganic pyrophosphatases (H+-PPases) from higher plants has been widely used to alleviate the sensitivity toward NaCl in these organisms, a strategy that had been previously tested in Saccharomyces cerevisiae. On the other hand, H+-PPases have been reported to functionally complement the yeast cytosolic soluble pyrophosphatase (IPP1). Here, the efficiency of the K+-dependent Na+-PPase from the archaeon Methanosarcina mazei (MVP) to functionally complement IPP1 has been compared to that of its H+-pumping counterpart from Arabidopsis thaliana (AVP1). Both membrane-bound integral PPases (mPPases) supported yeast growth equally well under normal conditions, however, cells expressing MVP grew significantly better than those expressing AVP1 under salt stress. The subcellular distribution of the heterologously-expressed mPPases was crucial in order to observe the phenotypes associated with the complementation. In vitro studies showed that the PPase activity of MVP was less sensitive to Na+ than that of AVP1. Consistently, when yeast cells expressing MVP were grown in the presence of NaCl only a marginal increase in their internal PPi levels was observed with respect to control cells. By contrast, yeast cells that expressed AVP1 had significantly higher levels of this metabolite under the same conditions. The H+-pumping activity of AVP1 was also markedly inhibited by Na+. Our results suggest that mPPases primarily act by hydrolysing the PPi generated in the cytosol when expressed in yeast, and that AVP1 is more susceptible to Na+ inhibition than MVP both in vivo and in vitro. Based on this experimental evidence, we propose Na+-PPases as biotechnological tools to generate salt-tolerant plants.

5.
Biochim Biophys Acta Mol Cell Res ; 1866(6): 1019-1033, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826332

RESUMO

Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Difosfatos/metabolismo , Estabilidade Enzimática , Pirofosfatase Inorgânica/genética , Mutagênese , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
7.
Eur J Protistol ; 55(Pt A): 95-101, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27062304

RESUMO

Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage.


Assuntos
Biotecnologia/tendências , Microalgas/fisiologia , Engenharia Genética , Pesquisa/tendências , Biologia de Sistemas
8.
Front Plant Sci ; 7: 85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904057

RESUMO

Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

9.
World J Microbiol Biotechnol ; 32(2): 27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748804

RESUMO

Inorganic polyphosphates (polyP) are linear polymers of tens to hundreds orthophosphate residues linked by phosphoanhydride bonds. These fairly abundant biopolymers occur in all extant forms of life, from prokaryotes to mammals, and could have played a relevant role in prebiotic evolution. Since the first identification of polyP deposits as metachromatic or volutin granules in yeasts in the nineteenth century, an increasing number of varied physiological functions have been reported. Due to their "high energy" bonds analogous to those in ATP and their properties as polyanions, polyP serve as microbial phosphagens for a variety of biochemical reactions, as a buffer against alkalis, as a storage of Ca(2+) and as a metal-chelating agent. In addition, recent studies have revealed polyP importance in signaling and regulatory processes, cell viability and proliferation, pathogen virulence, as a structural component and chemical chaperone, and as modulator of microbial stress response. This review summarizes the current status of knowledge and future perspectives of polyP functions and their related enzymes in the microbial world.


Assuntos
Polifosfatos/química , Polifosfatos/metabolismo , Células Procarióticas/química , Células Procarióticas/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Polifosfatos/farmacologia
10.
Biochim Biophys Acta ; 1853(11 Pt A): 2945-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344037

RESUMO

8-Dehydrosterols are present in a wide range of biologically relevant situations, from human rare diseases to amine fungicide-treated fungi and crops. However, the molecular bases of their toxicity are still obscure. We show here that 8-dehydrosterols, but not other sterols, affect yeast vacuole acidification through V-ATPases. Moreover, erg2Δ cells display reductions in proton pumping rates consistent with ion-transport uncoupling in vitro. Concomitantly, subunit Vph1p shows conformational changes in the presence of 8-dehydrosterols. Expression of a plant vacuolar H(+)-pumping pyrophosphatase as an alternative H(+)-pump relieves Vma(-)-like phenotypes in erg2Δ-derived mutant cells. As a consequence of these acidification defects, endo- and exo-cytic traffic deficiencies that can be alleviated with a H(+)-pumping pyrophosphatase are also observed. Despite their effect on membrane traffic, 8-dehydrosterols do not induce endoplasmic reticulum stress or assembly defects on the V-ATPase. Autophagy is a V-ATPase dependent process and erg2Δ mutants accumulate autophagic bodies under nitrogen starvation similar to Vma(-) mutants. In contrast to classical Atg(-) mutants, this defect is not accompanied by impairment of traffic through the CVT pathway, processing of Pho8Δ60p, GFP-Atg8p localisation or difficulties to survive under nitrogen starvation conditions, but it is concomitant to reduced vacuolar protease activity. All in all, erg2Δ cells are autophagy mutants albeit some of their phenotypic features differ from classical Atg(-) defective cells. These results may pave the way to understand the aetiology of sterol-related diseases, the cytotoxic effect of amine fungicides, and may explain the tolerance to these compounds observed in plants.


Assuntos
Autofagia/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Autofagia/genética , Membrana Celular/genética , Humanos , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética
11.
Appl Microbiol Biotechnol ; 99(9): 3887-900, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25381489

RESUMO

The single-copy genes encoding putative polyphosphate-glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium-long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180-230 and 2-3 µmol min(-1) mg(-1) with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg(2+) was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could shed new light on the evolutionary origin of sugar kinases.


Assuntos
Glucoquinase/isolamento & purificação , Glucoquinase/metabolismo , Hexoses/metabolismo , Nostoc/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polifosfatos/metabolismo , Clonagem Molecular , Coenzimas/análise , Glucoquinase/química , Glucoquinase/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Nostoc/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Multimerização Proteica , Temperatura
12.
Microbiology (Reading) ; 160(Pt 9): 2067-2078, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969471

RESUMO

The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.


Assuntos
Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Chlorobium/enzimologia , Chlorobium/genética , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/isolamento & purificação , Cátions Bivalentes/metabolismo , Clonagem Molecular , Análise por Conglomerados , Coenzimas/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Ativadores de Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hidrólise , Cinética , Dados de Sequência Molecular , Peso Molecular , Filogenia , Polifosfatos/metabolismo , Potássio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência , Especificidade por Substrato
13.
J Biol Chem ; 288(18): 13082-92, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23479727

RESUMO

Inorganic pyrophosphatases are required for anabolism to take place in all living organisms. Defects in genes encoding these hydrolytic enzymes are considered inviable, although their exact nature has not been studied at the cellular and molecular physiology levels. Using a conditional mutant in IPP1, the Saccharomyces cerevisiae gene encoding the cytosolic soluble pyrophosphatase, we show that respiring cells arrest in S phase upon Ipp1p deficiency, but they remain viable and resume growth if accumulated pyrophosphate is removed. However, fermenting cells arrest in G1/G0 phase and suffer massive vacuolization and eventual cell death by autophagy. Impaired NAD(+) metabolism is a major determinant of cell death in this scenario because demise can be avoided under conditions favoring accumulation of the oxidized pyridine coenzyme. These results posit that the mechanisms related to excess pyrophosphate toxicity in eukaryotes are dependent on the energy metabolism of the cell.


Assuntos
Autofagia/fisiologia , Metabolismo Energético/fisiologia , Pirofosfatase Inorgânica/metabolismo , NAD/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Difosfatos/metabolismo , Pirofosfatase Inorgânica/genética , NAD/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Curr Pharm Des ; 18(10): 1383-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22360554

RESUMO

Cancer cells show a metabolic shift that makes them overproduce protons; this has the potential to disturb the cellular acid-base homeostasis. However, these cells show cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug resistance. Vacuolar type ATPases (V-ATPases), together with other transporters, are responsible to a great extent for these symptoms. These multi-subunit proton pumps are involved in the control of cytosolic pH and the generation of proton gradients (positive inside) across endocellular membrane systems like Golgi, endosomes or lysosomes. In addition, in tumours, they have been shown to play an important role in the acidification of the intercellular medium. This importance makes them an attractive target to control tumour cell proliferation. In the present review we present the major characteristics of this kind of proton pumps and we provide some recent insights on their in vivo regulation. Also, we review some of the consequences that V-ATPase inhibition carries for the tumour cell, such as cell cycle arrest or cell death, and provide a brief summary of the studies related to cancer made recently with commercially available inhibitors. In the light of recent knowledge on the regulation of this proton pump, some new approaches to impair V-ATPase function are also suggested.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Equilíbrio Ácido-Base , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
15.
Biochim Biophys Acta ; 1817(8): 1152-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22289879

RESUMO

Cytochrome c550 (cyt c550) is a membrane component of the PSII complex in cyanobacteria and some eukaryotic algae, such as red and brown algae. Cyt c550 presents a bis-histidine heme coordination which is very unusual for monoheme c-type cytochromes. In PSII, the cyt c550 with the other extrinsic proteins stabilizes the binding of Cl(-) and Ca(2+) ions to the oxygen evolving complex and protects the Mn(4)Ca cluster from attack by bulk reductants. The role (if there is one) of the heme of the cyt c550 is unknown. The low midpoint redox potential (E(m)) of the purified soluble form (from -250 to -314mV) is incompatible with a redox function in PSII. However, more positive values for the Em have been obtained for the cyt c550 bound to the PSII. A very recent work has shown an E(m) value of +200mV. These data open the possibility of a redox function for this protein in electron transfer in PSII. Despite the long distance (22Å) between cyt c550 and the nearest redox cofactor (Mn(4)Ca cluster), an electron transfer reaction between these components is possible. Some kind of protective cycle involving a soluble redox component in the lumen has also been proposed. The aim of this article is to review previous studies done on cyt c550 and to consider its function in the light of the new results obtained in recent years. The emphasis is on the physical properties of the heme and its redox properties. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Grupo dos Citocromos c/fisiologia , Fotossíntese , Sequência de Aminoácidos , Grupo dos Citocromos c/química , Espectroscopia de Ressonância de Spin Eletrônica , Dados de Sequência Molecular , Oxirredução , Espectrofotometria Ultravioleta , Análise Espectral Raman
16.
Biochem J ; 437(2): 269-78, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21612578

RESUMO

V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments. In the present study, we show that the expression of a chimaeric derivative of the Arabidopsis thaliana H+-PPase AVP1, which is preferentially targeted to internal membranes of yeast, alleviates the phenotypes associated with V-ATPase deficiency. Phenotypic complementation was achieved both with a yeast strain with its V-ATPase specifically inhibited by bafilomycin A1 and with a vma1-null mutant lacking a catalytic V-ATPase subunit. Cell staining with vital fluorescent dyes showed that AVP1 recovered vacuole acidification and normalized the endocytic pathway of the vma mutant. Biochemical and immunochemical studies further demonstrated that a significant fraction of heterologous H+-PPase is located at the vacuolar membrane. These results raise the question of the occurrence of distinct proton pumps in certain single-membrane organelles, such as plant vacuoles, by proving yeast V-ATPase activity dispensability and the capability of H+-PPase to generate, by itself, physiologically suitable internal pH gradients. Also, they suggest new ways of engineering macrolide drug tolerance and outline an experimental system for testing alternative roles for fungal and animal V-ATPases, other than the mere acidification of subcellular organelles.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Macrolídeos/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Arabidopsis , Farmacorresistência Fúngica , Bombas de Próton/metabolismo , Força Próton-Motriz , Saccharomyces cerevisiae/metabolismo
17.
J Photochem Photobiol B ; 104(1-2): 301-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21402481

RESUMO

The microalgae Chlamydomonas reinhardtii and Chlorella sp. CCAP 211/84 were grown autotrophically and mixotrophically and their thermoluminescence emissions were recorded above 0 °C after excitation by 1, 2 or 3 xenon flashes or by continuous far-red light. An oscillation of the B band intensity according to the number of flashes was always observed, with a maximum after 2 flashes, accompanied by a downshift of the B band temperature maximum in mixotrophic compared to autotrophic grown cells, indicative of a dark stable pH gradient. Moreover, new flash-induced bands emerged in mixotrophic Chlamydomonas grown cells, at temperatures higher than that of the B band. In contrast to the afterglow band observed in higher plants, in Chlamydomonas these bands were not inducible by far-red light, were fully suppressed by 2 µM antimycin A, and peaked at different temperatures depending on the flash number and growth stage, with higher temperature maxima in cells at a stationary compared to an exponential growth stage. These differences are discussed according to the particular properties of cyclic electron transfer pathways in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Clorofila/química , Antimicina A/farmacologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Fosforilação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Temperatura , Xenônio/química
18.
Curr Microbiol ; 62(2): 479-85, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20717676

RESUMO

Strain 3D, isolated from fermented traditional Moroccan dairy product, and identified as Enterococcus faecium, was studied for its capability to produce two bacteriocins acting against Listeria monocytogenes. Bacteriocins 3 Da and 3Db were heat stable inactivated by proteinase K, pepsin, and trypsin but not when treated with catalase. The evidenced bacteriocins were stable in a wide pH range from 2 to 11 and bactericidal activity was kept during storage at 4°C. However, the combination of temperature and pH exhibited a stability of the bacteriocins. RP-HPLC purification of the anti-microbial compounds shows two active fractions eluted at 16 and 30.5 min, respectively. Mass spectrometry analysis showed that E. faecium 3D produce two bacteriocins Enterocin 3 Da (3893.080 Da) and Enterocin 3Db (4203.350 Da). This strain is food-grade organism and its bacteriocins were heat-stable peptides at basic, neutral, and acid pH: such bacteriocins may be of interest as food preservatives.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Enterococcus faecium/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Bacteriocinas/química , Cromatografia Líquida de Alta Pressão , Enterococcus faecium/isolamento & purificação , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Peso Molecular , Estabilidade Proteica , Temperatura
19.
Acta Biochim Biophys Sin (Shanghai) ; 42(12): 863-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21106768

RESUMO

The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.


Assuntos
Evolução Molecular , Peixes/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Octopodiformes/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Peixes/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/isolamento & purificação , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Octopodiformes/metabolismo , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Temperatura
20.
Recent Pat Anticancer Drug Discov ; 5(2): 88-98, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19941463

RESUMO

Vacuolar-type ATPases are multicomponent proton pumps involved in the acidification of single membrane intracellular compartments such as endosomes and lysosomes. They couple the hydrolysis of ATP to the translocation of one to two protons across the membrane. Acidification of the lumen of single membrane organelles is a necessary factor for the correct traffic of membranes and cargo to and from the different internal compartments of a cell. Also, V-ATPases are involved in regulation of pH at the cytosol and, possibly, extracellular milieu. The inhibition of V-ATPases has been shown to induce apoptosis and cell cycle arrest in tumour cells and, therefore, chemicals that behave as inhibitors of this kind of proton pumps have been proposed as putative treatment agents against cancer and many have been patented as such. The compounds filed in patents fall into five major types: plecomacrolides, benzolactone enamides, archazolids, chondropsins and indoles. All these have proved to be apoptosis inducers in cell culture and many to be able to reduce xenograft tumor growth in murine models. The present review will summarize their general structure, origin and mechanisms of action and put them in relation to the patents registered so far for the treatment of cancer.


Assuntos
Ácidos/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Organelas/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Patentes como Assunto , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...